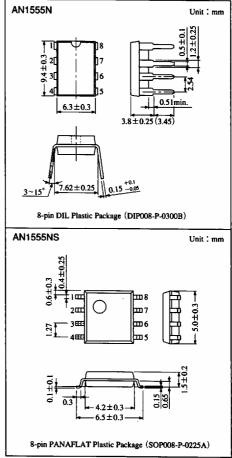
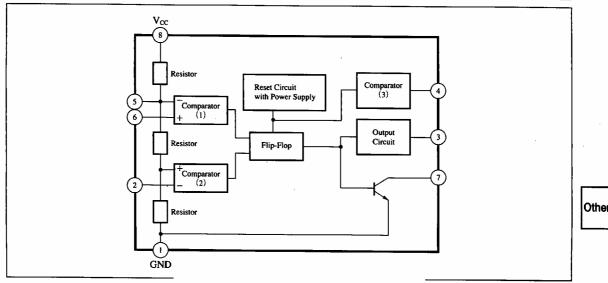
AN1555N, AN1555NS


General-use Precision Timers

Overview


The AN1555N, and the AN1555NS are the integrated circuits designed for generating an accurate and stable timing pulse and timer time. They are widely applicable a monostable or unstable multivibrator, etc.

Features

- Timing control microseconds to hours
- Max frequency in oscillation mode 100kHz
- · High stability vs. ambient temperature and supply volt-
- TTL compatible output
- 200mA sink or source output current capability
- Reset voltage: 1.4V typ

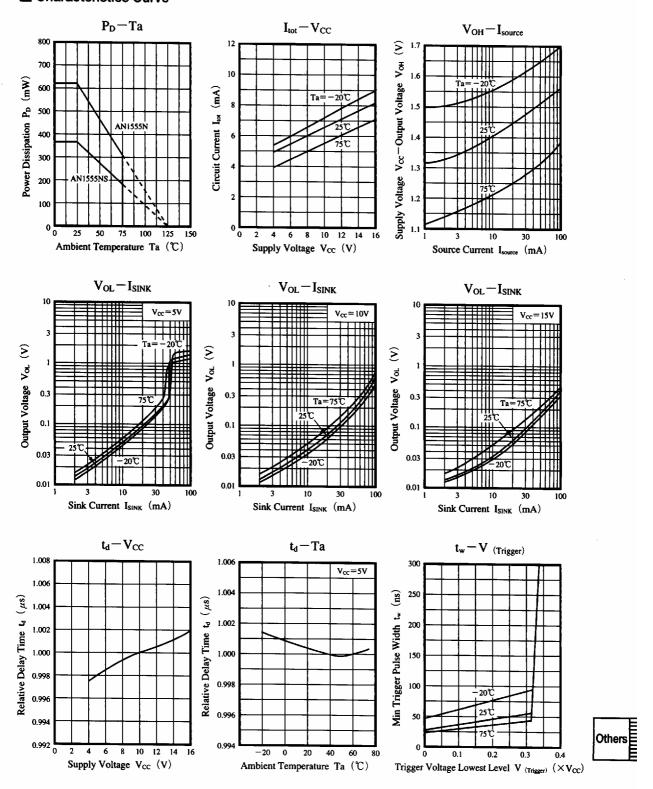
Block Diagram

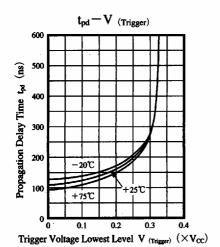
Others

■ Pin Descriptions

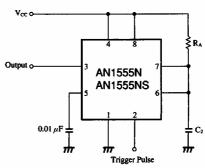
Pin No.	Pin name			
1	GND			
2	Trigger			
3	Output			
4	Reset			
5	Control voltage			
6	Threshold			
7	Discharge			
8	V _{cc}			

\blacksquare Absolute Maximum Ratings (Ta=25%)


Parameter		Symbol	Rating	Unit
Supply voltage		V _{cc}	18	v
Power dissipation	AN1555N	n l	625	
	AN1555NS	P _D	. 361	mW
Operating ambient temperature		T _{opr}	-20 to +75	r
Storage temperature		T _{stg}	-55 to + 125	r


\blacksquare Electrical Characteristics (Ta=25%)

Parameter	Symbol	Condition	min	typ	max	Unit
Circuit current	L _{tot}	$V_{CC}=5V, R_L=\infty, Output : L$		5	7	mA
Chedit Carlein		$V_{CC}=15V, R_L=\infty, Output: L$		8	12	mA
Threshold voltage	V _t	V _{CC} =5 to 15V		$\frac{2}{3}V_{\rm cc}$	_	v
Threshold current	I _t	V _{cc} =5 to 15V	_	0.03	0.3	μA
Trigger voltage	V _(Trigger)	V _{CC} =5 to 15V	_	$\frac{1}{3}V_{\rm cc}$		v
Trigger current	I _(Trigger)	$V_{cc}=5$ to 15V		0.1	0.5	μΑ
Reset voltage	V _(Reset)	V _{CC} =5 to 15V		1.4	2.0	V
Reset current	$I_{(Reset)}$	V _{CC} =5 to 15V	_	0.05	0.2	μΑ
Control voltage	V _(Cont.)	V _{cc} =5V	2.6	3.33	4.0	v
Control voltage		$V_{cc}=15V$	9.0	10.0	11.0	v
	Vol	$V_{CC}=5V$, I_{SINK} : 5mA	_	0.05	0.2	V
		V _{CC} =5V, I _{SINK} : 8mA		0.08	0.25	v
Output voltage "L" level		$V_{CC}=15V, I_{SINK}: 10mA$	_	0.05	0.2	v
Output voltage L level		V _{CC} =15V, I _{SINK} : 50mA		0.2	0.5	v
		V _{CC} =15V, I _{SINK} : 100mA		0.5	2	v
		V _{CC} =15V, I _{SINK} : 200mA	_	2.5		v
Output voltage "H" level	V _{OH}	V _{CC} =5V, I _{source} : 100mA	2.8	3.3	_	v
Output voltage 11 level		V _{CC} =15V, I _{source} : 100mA	12.8	13.3	_	v
Initial time interval error	⊿t _E	Unstable oscillation	_	1.0	_	%
Time interval temperature regulation	∆t _T	R_A , $R_B = 1$ to $100k \Omega$		50		ppm/°C
Time interval supply voltage regulation	⊿t _V	$C=0.1 \mu F$		0.1	_	%/V
Rise time	t _r	V _{cc} =5 to 15V		100	_	ns
Fall time	t _f	76. 310134		100		ns


Note) Operating Supply Voltage Range: $V_{CC(opr)} = 4.5$ to 16V

■ Characteristics Curve

Application Circuit

- $\begin{array}{l} \cdot \text{ Parts and measuring apparatus} \\ \cdot \text{ R}_{\text{A}} \text{ : Metal film resistor} \\ \cdot \text{ C}_{\text{2}} \text{ : Polyester capacitor} \\ \cdot \text{ Output : Universal counter load } 1\text{k}\,\Omega \\ \end{array}$

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.